

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[0.7.1-1] - 2023-02-08

Changed

	Libmdb v0.12.6.

[0.7.0-1] - 2022-09-20

Added

	LibDFTB+ v21.1.

Changed

	ELSI to v2.7.1.

	Libmdb v0.12.1.

	Spglib v1.16.2.

	ELPA v2021.05.002.

	NTPoly to v2.7.0.

[0.6.1-3] - 2022-08-11

Fixed

	Missing OMM dependency for ELSI.

[0.6.1-2] - 2021-10-15

Fixed

	Misspelled name of the ELSI-RCI package in the module sets.

[0.6.1-1] - 2021-05-14

Changed

	Spglib to v1.16.1.

	ELPA to v2020.11.001.

[0.6.0-1] - 2020-03-12

Added

	BSEPACK v0.1.

	Libmdb v0.10.2.

Changed

	Libpsml to v1.1.10.

	LibGridXC to v0.9.6.

	NTPoly to v2.5.1.

	ELSI to v2.6.4.

	ELPA to v2020.05.001.

	scotch to v6.1.0.

	Sgplib to v1.16.0.

	Wannier90 to 3.1.0.

[0.5.0-1] - 2020-05-08

Added

	sgplib v1.14.1

	wannier90 v3.0.0

	ELSI-RCI v0.1.0

	MatrixSwitch v1.0.0 as a stand-alone library.

	LibOMM v1.0.0 as a stand-alone library.

	install-bundle wrapper to make the use of JHBuild easier.

Changed

	Fdict to v0.8.0.

	Flook to v0.8.1.

	Libfdf to v0.2.2.

	LibGridXC to v0.9.5

	NTPoly to v2.4.0

	SuperLU_DIST to v6.2.0

	ELSI to v2.5.0

	JHBuild to a new version supporting Python 3.

[0.4.2-1] - 25-02-2020

Changed

	LibPSML to v1.1.9.

	ELPA to v2019.05.002.

[0.4.1-1] - 2020-02-22

Fixed

	URLs of several package websites.

Changed

	LibPSML to v1.1.8.

[0.4.0-1] - 2020-02-21

Fixed

	Compilation of Futile with recent intel compilers.

	Installation of Flook and Fdict on MacOS.

Changed

	LibGridXC with autotoolized build system to 0.8.5.1.

	Fdict to v0.7.1.

	libvdwxc to v0.4.0.

	Libxc to v4.3.4.

	ELPA to v2019.05.001.

	NTPoly to v2.3.1.

	SuperLU_DIST to v6.1.1.

	ELSI to v2.3.1

	PEXSI to v1.2.0.

[0.3.1-2] - 2019-01-18

Added

	Documentation about the bundle release process.

[0.3.1-1] - 2019-01-17

Fixed

	Name of Libvdwxc in documentatation.

	ChangeLog.

	LibGridXC build-system by updating to v0.8.4.2.

Changed

	Futile to align it with upstream BigDFT/Futile v1.8.3.

	PSolver to align it with upstream BigDFT/PSolver v1.8.3.

[0.3.0-2] - 2019-01-15

Added

	Configuration files: ubuntu-gcc-serial.rc, ubuntu-gcc-openmpi.rc, fedora-gcc-serial.rc, fedora-gcc-openmpi.rc, centos-gcc-serial.rc, centos-gcc-openmpi.rc.

[0.3.0-1] - 2019-01-14

Added

	Libvdwxc v0.3.2.

	NTPoly v2.1.

	PEXSI as a stand-alone library.

Changed

	Fdict to v0.6.0.

	Libxc to v4.2.3.

	LibGridXC to v0.8.4.

	ELSI to v2.1.0.

	ELPA to v2018.11.001.

	PEXSI to v1.0.3.

	scotch to v6.0.0.

Removed

	libyaml v0.1.6.

[0.2.0-4] - 2019-01-14

Fixed

	Incorrect Python requirements in documentation.

[0.2.0-3] - 2019-01-12

Fixed

	Incorrect ELPA version number in documentation.

	Bug in configuration files: compilation of xmlf90 was failing with GCC because of long lines.

[0.2.0-2] - 2019-01-12

Fixed

	Typo in documentation.

[0.2.0-1] - 2018-07-09

Added

	ELPA as a stand-alone library.

	Author and license information for scotch and superlu_dist.

	Configuration files: debian-gcc-serial.rc, opensuse-gcc-serial.rc.

Changed

	ELSI to v2.0.2

	ELPA to v2018.05.001.

	Configuration files for new ELSI version.

Fixed

	Incorrect scotch version number in documentation.

[0.1.0] - 2018-06-07

Added

	Fdict v0.5.0.

	Flook v0.7.0.

	Futile v1.8.

	Libfdf v0.1.1.

	Libpsml v1.1.7.

	Libxc v3.0.1.

	libGridXC v0.8.0.3.

	PSolver v1.8.1.

	pspio v0.2.4.

	xmlf90 v1.5.4.

	libyaml v0.1.6.

	ELSI v180205.

	ELPA v2016.11.001.

	LibOMM (included in ELSI).

	MatrixSwitch (included in ELSI).

	PEXSI (included in ELSI).

	SIPs (included in ELSI).

	superlu_dist v5.3.0.

	scotch v6.0.4

	esl module set.

	esl-bundle and esl-bundle-mpi meta-modules.

	Configuration files: debian-gcc-openmpi.rc, gfortran+mpi.rc, opensuse-gcc-openmpi.rc.

 [image: _images/pipeline.svg]image [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/commits/master]

The ESL Bundle

The ESL Bundle is a collection of libraries and utilities broadly used
in electronic structure calculations, put together to make their use
easier by researchers and scientific software developers. It includes a
building framework helping users, developers and packagers in obtaining
a working installation of complex combinations of software packages
without having to track the dependencies themselves.

ESL stands for Electronic Structure Library, an initiative which
distributes quality software and promotes open standards for
high-performance computing applications in the field of electronic
structure calculations. More details can be found on the ESL
website [https://esl.cecam.org/].

Requirements

To work properly, the ESL Bundle requires Python 3.x but still works
with Python 2.7 for now. Fortran, C and C++ compilers are also required,
as most modules are written in one or more of these programming
languages. Some modules also provide bindings for other languages.
Depending on the modules you wish to build, some additional packages
might be required. These are packages that are found in most Linux
distributions and/or commonly available in HPC facilities, and therefore
it was not deemed necessary to include them in the ESL Bundle.

Some modules support parallelization through MPI. A working MPI
installation is necessary to build modules with MPI support.

Packages

This is a complete list of packages included in the ESL Bundle.

Package	Version	Language	Bindings	Other dependencies	Website
————–	————-	———-	———-	————–	———————————————————-
BSEPACK	0.1	Fortran			https://sites.google.com/a/lbl.gov/bsepack/
ELSI-RCI	0.1.0	Fortran			http://elsi-interchange.org/
Fdict	0.8.0	Fortran			https://github.com/zerothi/fdict
Flook	0.8.1	Fortran		Lua	https://github.com/ElectronicStructureLibrary/flook
Futile	1.8.3	Fortran	C		https://gitlab.com/l_sim/futile
LibDFTB+	20.1	Fortran			https://dftbplus.org
Libfdf	0.2.2	Fortran			https://gitlab.com/siesta-project/libraries/libfdf
Libmbd	0.12.6	Fortran	C		https://github.com/libmbd/libmbd
Libpsml	1.1.10	Fortran			https://gitlab.com/siesta-project/libraries/libpsml
Libxc	4.3.4	C	Fortran,C++		http://www.tddft.org/programs/libxc
libGridXC	0.9.6	Fortran			https://gitlab.com/siesta-project/libraries/libgridxc
libvdwxc	0.4.0	C	Fortran	FFTW	https://libvdwxc.org/
NTPoly	2.7.0	Fortran			https://github.com/william-dawson/NTPoly
PSolver	1.8.3	Fortran			https://gitlab.com/l_sim/psolver
pspio	0.2.4	C	Fortran	GSL	https://gitlab.com/ElectronicStructureLibrary/libpspio
xmlf90	1.5.4	Fortran			https://gitlab.com/siesta-project/libraries/xmlf90
ELSI	2.7.1	Fortran	C		http://elsi-interchange.org/
ELPA	2021.05.001				https://gitlab.mpcdf.mpg.de/elpa/elpa
LibOMM					https://gitlab.com/ElectronicStructureLibrary/omm
MatrixSwitch					https://gitlab.com/ElectronicStructureLibrary/omm
PEXSI	1.2.0	C++	Fortran		http://www.pexsi.org
SIPs					http://bitbucket.org/keceli/qetsc
SuperLU_DIST	6.2.0				http://crd-legacy.lbl.gov/~xiaoye/SuperLU
scotch	6.1.0				https://www.labri.fr/perso/pelegrin/scotch
Spglib	1.16.2				https://github.com/atztogo/spglib
Wannier90	3.1.0				http://www.wannier.org

Installation

The ESL Bundle comes with a version of
JHBuild [https://wiki.gnome.org/Projects/Jhbuild/Introduction] which has been
tuned to fit the context of the ESL.
JHBuild [https://wiki.gnome.org/Projects/Jhbuild/Introduction] supports a wide
variety of build systems, although it is not a build system itself. It
is rather a tool designed to ease the build of collections of related
source packages, that it calls “modules”. It was originally written
for the Gnome Project [https://www.gnome.org/], but its use has then
been extended to other situations.

To make the use of
JHBuild [https://wiki.gnome.org/Projects/Jhbuild/Introduction] easier in the
context of the ESL Bundle, we provide a wrapper script called
install-bundle that can be found in the top source directory of the
bundle. Most of the operations are performed by executing this
install-bundle script with appropriate parameters. The command line
syntax is the following:

install-bundle [global-options] [package(s) ...]

The following global options are available and can be shown running the
following command from the top source directory of the bundle:

./install-bundle -h

In particular, this command shows the currently possible values for each
of the options:

	-c, --compilers VENDOR: Use compilers from VENDOR instead of the
default (gcc).

	-f, --flavor FLAVOR: Use the build parameters corresponding to
FLAVOR (usually a MPI implementation) instead of the default
(serial).

	-m, --moduleset NAME: Use the module set NAME instead of the
default (esl). Please note that some module sets are still under
development (abinit, siesta).

	-s, --system SYSTEM: Use the operating system or Linux distribution
labelled SYSTEM instead of the default (generic).

	--exit-on-error: Exit immediately if a module fails to build
instead of continuing with other modules.

	--no-interact: Do not prompt the user for any input. This option is
useful if leaving a build unattended, in order to ensure that
JHBuild will not prompt the user for input.

	--conditions ARGS: Change the way modules are built according to
ARGS instead of the defaults. ARGS can be specified as e.g. +no_elpa
(to skip the build of ELPA) or +yaml (if libyaml is missing on your
system). This feature is still experimental and provides the
above-mentioned examples only for now.

In the ESL Bundle, the default module set is esl. It provides a
meta-module called esl-bundle, which builds and installs all the
packages included in the bundle. A second meta-module, called
esl-bundle-mpi, is provided to build the packages with MPI support.
Note that not all packages can be compiled with MPI support. In that
case they will be built without it.

The install-bundle script does not need to be invoked from the
directory where it is located.

NOTE

To keep the source directory clean, we highly recommended the use of a build directory.

Therefore, a typical way of installing the collection of ESL libraries
is the following:

mkdir my_build_dir
cd my_build_dir
../install-bundle

By default, the build command will compile all the modules from the
esl-bundle meta-module and install them in the current directory.
This, and a few other options, can be changed using configuration files.
Several sample configuration files are provided in the rcfiles/
subdirectory. These files should be suitable to build the bundle in a
variety of systems, but they can also be used as a starting point to
write configuration files more suited to your needs.

If you want to use the install-bundle script with your own config
files, please follow the naming convention SYSTEM-VENDOR-FLAVOR.rc,
where: SYSTEM is the operating system or Linux distribution the file
is meant for, or generic if it does not matter; VENDOR is the vendor
of the C, C++ and Fortran compilers used to build the packages; FLAVOR
is the MPI implementation to use, or serial if there is none. If you
add support for a new compiler vendor, please create a file named
generic-VENDOR-serial.rc with the corresponding options, else the
install-bundle script will complain.

The configuration files use Python syntax. Here is a list of some
important options:

	modules: dictionary of modules to build.

	prefix: directory where the modules should be installed.

	checkoutroot: where to unpack the module’s sources.

Configuration options to be passed to the modules build systems can also
be specified in the configuration file. Here is an example of how to do
this:

Set the FC variable when invoking the configure script for all modules
autogenargs="FC=gfortran"

Run make in parallel with two threads
makeargs="-j2"

Here the futile module requires an extra configuration option.
Note that this will overwrite the global options set by autogenargs, so we
have to add it here explicitly.
module_autogenargs['futile'] = "--with-ext-linalg='-lopenblas' " + autogenargs

pkg-config

The ESL Bundle provides
pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/]
files for all the modules. These can be used to make the installed
packages available to other applications.

To use this feature, a working installation of
pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/] is
necessary. To make the installed packages available to other
applications, the most important is to set the PKG_CONFIG_PATH
environment variable. For a Bourne-like shell, the command is:

export PKG_CONFIG_PATH="/path/to/esl-bundle/my_build_dir/install/lib/pkgconfig:${PKG_CONFIG_PATH}"

while for a C-like shell it is:

setenv PKG_CONFIG_PATH "/path/to/esl-bundle/my_build_dir/install/lib/pkgconfig:${PKG_CONFIG_PATH}"

where you replace /path/to/esl-bundle/my_build_dir by the full path to
your actual build directory.

Provided the application you wish to build is aware of
pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/],
this command will let it automatically configure all the libraries it
needs to build and run.

NOTE

Please read the
pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/]
documentation on how to use
pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/] to
compile your application.

 Reporting a bug that is intrinsically related to the esl-bundle

NOTE: Please select option Library Bug when reporting bugs specific to a library

	[] Ensure the title is prefixed with [bundle]

	[] Add a description of the problem with the esl-bundle

	[] Describe how the bundle was build

	[] Preferably attach your JHbuild config.rc

	[] If you have a fix, please let us know! :-)

 Reporting bug that is intrinsically related to a specific library

NOTE: Please select option Bug when reporting bugs specific to the esl-bundle

	[] Ensure the title is prefixed with [insert-library-name-here]

	[] Add a description of the problem with the library

If you have used the bundle to install the library you could add this information:

	[] Describe how the bundle was build

	[] Preferably attach your JHbuild config.rc

	[] If you have a fix, please let us know! :-)

/label ~Upstream

	[] Create new milestone

	[] Update JHBuild from upstream

	[] Create issue for package update proposal

	[] Create branch and merge request for package update proposal (done from the issue)

	[] Check availability of new releases of the supported Linux distros and create new Docker images

	[] Debian

	[] Ubuntu

	[] Fedora

	[] OpenSUSE

	[] Collect issues for package updates/additions

	[] Create merge requests for all package updates/additions

	[] Contact Steering Committee for MR approval

	[] Merge package update proposal

	[] Merge package updates/additions

	[] Merge release branch into master

	[] Tag new release

Checklist

	[] Add/remove tarball to/from the tarballs [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/tree/master/tarballs] folder.

	[] Update the modulesets/esl.modules [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/modulesets/esl.modules] file.

	[] If needed, update rc files in the rcfiles [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/tree/master/rcfiles] folder.

	[] Update ChangeLog.rst [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/ChangeLog.rst].

	[] Update the AUTHORS [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/AUTHORS] and COPYING [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/COPYING] files.

Note: Unless this is a bugfix update, do not update the README.rst [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/README.rst] file. For major/minor releases this is done in a separate merge request.

Checklist

	[] Add new tarball to the tarballs [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/tree/master/tarballs] folder and remove the old one.

	[] Update the modulesets/esl.modules [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/modulesets/esl.modules] file.

	[] If needed, update rc files in the rcfiles [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/tree/master/rcfiles] folder.

	[] Update ChangeLog.rst [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/ChangeLog.rst].

Note: Unless this is a bugfix update, do not update the README.rst [https://gitlab.com/ElectronicStructureLibrary/esl-bundle/-/blob/master/README.rst] file. For major/minor releases this is done in a separate merge request.

JHBuild README

JHBuild is a tool designed to ease building collections of source
packages, called “modules”.

JHBuild was originally written for building GNOME, but has since been
extended to be usable with other projects.

JHBuild requires Python >= 3.7

Installing JHBuild

Refer to the ‘Getting Started’ section of the JHBuild manual:

https://gnome.pages.gitlab.gnome.org/jhbuild/getting-started.html

Or refer to the online JHBuild manual at:

https://gnome.pages.gitlab.gnome.org/jhbuild/index.html

	An introduction to JHBuild is also available on the GNOME Wiki:

	https://wiki.gnome.org/Projects/Jhbuild/Introduction

Using JHBuild

JHBuild uses a command line syntax similar to tools like CVS:

jhbuild [global-options] command [command-arguments]

The global JHBuild options are:

	-f, --file config

	Use an alternative configuration file instead of the default
~/.config/jhbuildrc.

	-m, --moduleset moduleset

	Use a module set other than the module set listed in the
configuration file. This option can be a relative path if the module
set is located in the JHBuild moduleset folder, or an absolute path
if located elsewhere.

	--no-interact

	Do not prompt the user for any input. This option is useful if
leaving a build unattended, in order to ensure the build is not
interrupted.

Refer to the JHBuild manual for a complete list of JHBuild commands
and options. The common ones are:

jhbuild bootstrap

The bootstrap command installs a set of build utilities. The build
utilities include autoconf , automake and similar utilities. The
recommended method to install the build utilities is via your
distribution’s package management system. The bootstrap should only be
used if the build utilites are not provided by your distribution’s package
management system, for example on Mac OS.

jhbuild build [–autogen] [–clean] [–dist] [–distcheck] [–ignore-suggests] [–no-network] [–skip=module…] [–start-at=module] [–tags=tags] [-D date] [–no-xvfb] [–try-checkout] [–no-poison] [–force] [–build-optional-modules] [–min-age=time] [module…]

The build command builds one or more packages, including their
dependencies.

If no module names are provided on the command line, the modules
list from the configuration file will be used.

	-a, --autogen

	Always run autogen.sh before building modules. By default,
autogen.sh will only be called if the top-level makefile is
missing. Otherwise, JHBuild relies on the package’s makefiles to
detect if configure needs to be rebuilt or rerun.

	-c, --clean

	Run make clean before building modules.

	-d, --dist

	Run make dist after building modules.

	--distcheck

	Run make distcheck after building modules.

	--ignore-suggests

	Do not build soft dependencies.

	-n, --no-network

	Do not access the network when building modules. This will skip
download or update stages in a build. If a module can’t be built
without network access, the module build will fail.

	-s, --skip=<module,…>

	Do not build the listed modules. Used to skip the building of
specified dependencies.

	--tags=<tag,…>

	Ignore modules that do not match tag. Modules are automatically
attributed a tag matching the name of the module’s module set.

	-t, --start-at=module

	Start at the named module rather than at the beginning of the
list. This option is useful if the build was interrupted.

	-D date

	If supported by the underlying version control system, update the
source tree to the specified date before building. An ISO date
format is required, e.g. “2009-09-18 02:32Z”.

	-x, --no-xvfb

	Run graphical tests on the actual X server rather than in a
simulated Xvfb.

	-C, --try-checkout

	If the build fails, and if supported by the version control system,
force a checkout and run autogen.sh before retrying the build.

	-N, --no-poison

	If one or more of a module’s dependencies failed, this option forces
JHBuild to try to build the module anyway.

	-f, --force

	Build the modules even if policy states it is not required.

	--build-optional-modules

	Modules listed as optional dependencies, may not be required to
build the module. This option forces JHBuild to build optional
dependencies.

	--min-age=time

	Skip modules installed more recently than the specified relative
time. The time string format is a number followed by a unit. The
following units are supported: seconds (s), minutes (m), hours (h)
and days (d). For example, –min-age=2h will skip modules built
less than two hours ago.

jhbuild buildone [–autogen] [–clean] [–distcheck] [–no-network] [-D date] [–no-xvfb] [–force] [–min-age=time] module…

The buildone command is similar to build, but it does not build the
dependent modules. It is useful for rebuilding one or more modules.

jhbuild sanitycheck

The sanitycheck command performs a number of checks to verify the
build environment is okay.

For details of all jbhuild’s command line options:

jhbuild –help

Reporting Bugs

If you find any bugs in JHBuild, or have feature requests (or
implementations :), please file them at:

https://gitlab.gnome.org/GNOME/jhbuild/issues/new

This will ensure your request is not lost.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

